Markov Chain, Monte Carlo Global Search and Integration for Bayesian, GPS, Parameter Estimation
نویسندگان
چکیده
Bayesian estimation techniques are applied to the problem of time and frequency offset estimation for Global Positioning System receivers. The estimation technique employs Markov Chain Monte Carlo (MCMC) to estimate unknown system parameters, utilizing a novel, multi-dimensional, Bayesian, global optimization strategy for initializing a Metropolis-Hastings proposal distribution. The technique enables the design of a high performance multi-user GPS receiver, capable of overcoming the near-far problem when the relative signal power is on the order of 5 dB (single antenna element) and 20 dB (4 antenna element array) and providing dramatically improved performance over conventional matched filter techniques against interference and jamming when the relative jammer and satellite signal power is on the order of 20 dB (4 antenna element array). INTRODUCTION A new class of GPS receivers is proposed herein that offers improved performance in heavy interference and heavy multipath environments [1-4, 10]. Instead of using a simple sliding correlator to measure time of arrivals (TOAs) and Doppler frequencies, we employ a multi-emitter, statistical signal model, similar to that employed in multi-user detection (MUD) receivers [12-14]. We also propose jointly estimating Doppler frequencies and TOA using nearly optimal Bayesian estimation techniques [1-4]. The resulting receiver enjoys improved performance, is able to receive more GPS satellite signals, has multipath immunity and elegantly resolves the near-far problem when the relative signal power between the weakest
منابع مشابه
Bayesian change point estimation in Poisson-based control charts
Precise identification of the time when a process has changed enables process engineers to search for a potential special cause more effectively. In this paper, we develop change point estimation methods for a Poisson process in a Bayesian framework. We apply Bayesian hierarchical models to formulate the change point where there exists a step < /div> change, a linear trend and a known multip...
متن کاملNew Approaches in 3D Geomechanical Earth Modeling
In this paper two new approaches for building 3D Geomechanical Earth Model (GEM) were introduced. The first method is a hybrid of geostatistical estimators, Bayesian inference, Markov chain and Monte Carlo, which is called Model Based Geostatistics (MBG). It has utilized to achieve more accurate geomechanical model and condition the model and parameters of variogram. The second approach is the ...
متن کاملSequential Monte Carlo Samplers
In this paper, we propose a methodology to sample sequentially from a sequence of probability distributions known up to a normalizing constant and defined on a common space. These probability distributions are approximated by a cloud of weighted random samples which are propagated over time using Sequential Monte Carlo methods. This methodology allows us to derive simple algorithms to make para...
متن کاملExponential Parameter Estimation (in NMR) Using Bayesian Probability Theory
Data modeled as sums of exponentials arise in many areas of science and are common in NMR. However, exponential parameter estimation is fundamentally a difficult problem. In this article, Bayesian probability theory is used to obtain optimal exponential parameter estimates. The calculations are implemented using Markov chain Monte Carlo with simulated annealing to draw samples from the joint po...
متن کاملHierarchical Bayesian of ARMA Models Using Simulated Annealing Algorithm
When the Autoregressive Moving Average (ARMA) model is fitted with real data, the actual value of the model order and the model parameter are often unknown. The goal of this paper is to find an estimator for the model order and the model parameter based on the data. In this paper, the model order identification and model parameter estimation is given in a hierarchical Bayesian framework. In thi...
متن کامل